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Abstract. The diffusion radius of the 1S muonic hydrogen atoms in gaseous H2 targets with various deu-
terium admixtures has been determined for temperatures T = 30 and 300 K. The Monte Carlo calculations
have been performed using the partial differential cross sections for pµ and dµ atom scattering from the
molecules H2, HD and D2. These cross sections include hyperfine transitions in the muonic atoms, the
muon exchange between the nuclei p and d, and rotational-vibrational transitions in the target molecules.
The Monte Carlo results have been used for preparing the time-projection chamber for the high-precision
measurement of the nuclear µ− capture in the ground-state pµ atom, which is now underway at the Paul
Scherrer Institute.

PACS. 34.50.-s Scattering of atoms and molecules – 36.10.Dr Positronium, muonium, muonic atoms and
molecules

Theoretical studies of the muonic atom diffusion in molec-
ular hydrogen-isotope targets are important for many
experiments in low-energy muon physics. In particular,
knowledge of the diffusion radius of muonic hydrogen
atoms in gaseous H-D targets is required for investiga-
tions of the µ− nuclear capture in the pµ and dµ atoms
created in H-D targets. The diffusion radius Rdiff is de-
fined as the distance between the point of the muon stop
in H-D and the point of the muonic atom disappearance
due to the muon decay or to the muon nuclear capture.
Since the µ− capture rate on p or d is several orders of
magnitude lower than the muon decay rate, Rdiff is practi-
cally determined by the point of the muon decay. A high-
precision measurement of the rate Λs for the muon capture
pµ → νµ + n in the ground-state pµ atom (MuCap exper-
iment) is underway at the Paul Scherrer Institute [1–4].
The rate Λs for the singlet state F = 0 of the total muonic
atom spin F is sensitive to the weak form factors of the
nucleon, especially to the induced pseudoscalar coupling
constant gP . As a result, this experiment will provide a rig-
orous test of theoretical predictions based on the Stan-
dard Model and low-energy effective theories of QCD [5,6].
A high-precision measurement of the µ− capture rate in
the process dµ → νµ + n + n is under consideration by
the MuCap collaboration [3]. Such an experiment would
be uniquely suited to study the axial meson exchange cur-
rents in the two-nucleon system.

a e-mail: andrzej.adamczak@ifj.edu.pl

In this paper, main results of the Monte Carlo
simulations for determining the optimal conditions for
the MuCap experiment are presented. The time-projection
chamber is filled with almost pure H2 gas which, however,
contains a very small D2 contamination. In the isotope ex-
change process pµ+d → dµ+p, the energy of about 135 eV
is released in the centre-of-mass system. Therefore, the
created dµ atom gains the collision energy of a few tens eV.
As a result, the diffusion radius is significantly enlarged.
This leads to an enhanced absorption of the muons in the
time-projection-chamber walls and limits the spatial res-
olution. The determination of the highest acceptable D2

contamination has been one of the aims of the presented
simulations. Since the capture rate Λs depends strongly on
the total pµ spin, it is necessary to calculate the time evo-
lution of the population of the pµ spin states. The initial
distribution of the spin states F = 1 and F = 0 is statis-
tical. The simulations have been performed for the target
temperatures T = 30 and 300 K. The target density has
been fixed at the constant value φ = 0.01 (relative to the
liquid hydrogen density of 4.25× 1022 atoms/cm3), which
corresponds to the pressure of about 9 bar at 300 K. At
such a density, the probability of formation of the muonic
molecule ppµ is small. In higher-density targets, the muon
nuclear capture inside ppµ is significant. This leads to se-
rious problems with interpreting the experimental data
owing to inaccuracy of the rate for the ortho-para conver-
sion of the ppµ molecules [1–5]. The spin-flip transition
pµ(F = 1)+p → pµ(F = 0)+p due to the muon exchange
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Fig. 1. (Color online) Transport (dashed lines) and total
(solid lines) cross sections for the scattering of pµ(F = 0)
and dµ atoms from a ground-state H2 molecule versus the col-
lision energy ε in the laboratory system. The doubled total
cross sections (dash-dotted lines) for the corresponding nuclear
scattering are shown for comparison. The hyperfine-transition
threshold is denoted by ∆Ehfs

pµ .

between the protons is still sufficiently strong at φ ≈ 0.01
to ensure a fast quenching of the higher hyperfine state
F = 1 and, therefore, an unambiguous Λs measurement.

The Monte Carlo kinetics code includes the muon de-
cay, pµ and dµ scattering from the molecules H2, HD
and D2, and formation of the molecules ppµ, pdµ and ddµ.
In the scattering process, the atoms can change their spin
states. The isotope exchange reaction pµ + d → dµ + p
in pµ scattering from HD and D2 is taken into account.
Also, all possible rotational and vibrational transitions in
the target molecules are included. At the collision ener-
gies ε � 10 eV (in the laboratory system), the scattering
processes are described using the differential cross sections
dσ/dΩ for scattering from the hydrogenic molecules [7,8]
(“molecular” cross sections). At higher energies, effects of
the molecular binding and electron screening can be ne-
glected and, therefore, the differential cross sections for
the muonic atom scattering from hydrogen-isotope nuclei
are used [9–12] (“nuclear” cross sections). In Figure 1, the
total molecular cross sections for pµ(F = 0) and dµ scat-
tering from the ground-state H2 molecule are shown as an
example. The muonic atom spin is conserved in the pre-
sented processes. Also, the corresponding transport cross
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Fig. 2. Time dependence of the pµ(F = 0) population and
of the mean pµ(F = 0) kinetic energy εavg in a pure H2 at
T = 300 K and ϕ = 0.01.

sections, defined as

σtran =
∫

dΩ (1 − cosϑ)
dσ(ϑ)
dΩ

, (1)

are shown. The scattering angle is denoted here by ϑ.
The doubled total nuclear cross sections for the processes
pµ(F = 0) + p → pµ(F = 0) + p and dµ + p → dµ + p are
plotted for comparison. The transport cross sections ap-
proach the total cross section only at ε → 0, which demon-
strates strong anisotropy of the molecular cross sections.
Large differences between the molecular and nuclear cross
sections at ε � 1 eV are due to molecular-binding and
electron-screening effects. The total molecular and nuclear
cross sections for all combinations of the three hydrogen
isotopes are presented in reference [13].

The time evolution of the hyperfine states, the energy
distribution of the muonic atoms, and the radial distri-
bution of the muon decays were calculated for various
initial conditions. All the presented results are given for
a fixed target density ϕ = 0.01. The initial distribution
of the pµ or dµ kinetic energy was described by the two
Maxwell components: thermal (50%) and energetic (50%)
with the mean energy εavg = 1–5 eV, according to the
experimental results [14,15]. The calculated time evolu-
tion of the F = 0 state and of the mean pµ(F = 0)
kinetic energy are shown in Figure 2, for a pure H2 at
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Fig. 3. (Color online) Energy distribution of pµ(F = 0) and
pµ(F = 1) atoms in a H2 gas at T = 300 K, for several moments
after the muon stop.

T = 300 K. The pµ atoms starting at ε ∼ 1 eV are slowed
down within a few tens ns to energies where the spin-flip
transitions F = 0 → F = 1 are impossible. The hyperfine-
transition threshold is ∆Ehfs

pµ = 0.182 eV in the pµ + p
centre-of-mass system. After this time, the F = 1 state
disappears with a time constant of 6 ns. Hence, about
50 ns after the muon stop, the relative population of the
F = 1 state is below 0.01 and the measurement is no
longer distorted by the population of the upper hyperfine
level. All that takes place when most of the initially ener-
getic atoms remains epithermal (ε � kBT , where kB is the
Boltzmann constant). The pµ(F = 0) thermalization from
ε ≈ 0.1 eV takes about 400 ns. As it is illustrated in Fig-
ure 3, the pµ(F = 0) energy spectrum is epithermal for
times much longer than in the case of pµ(F = 1) atoms.
Only after the total deexcitation of the F = 1 level, the
pµ(F = 0) energy distribution takes the final Maxwellian
form with εavg = 0.04 eV. Most of the pµ diffusion un-
til the muon decay takes place after the system has been
thermalized.

The mean diffusion range, which is important for the
optimisation of the pressure and temperature of H2 filling
the time-projection chamber, equals about 1 mm. How-
ever, long-lived (t � 10 µs) muons travel much farther,
which limits the reachable spatial resolution. Figure 4
shows the fraction of the muon decays outside the dif-

10
-5

10
-4

10
-3

10
-2

10
-1

1

0 1 2 3 4 5 6 7 8 9 10

diffusion radius (mm)

300 K

30 K

Fig. 4. (Color online) Fraction of the µ− decays outside the pµ
diffusion radius from the point of pµ formation in a pure H2,
for times t ≤ 20 µs and T = 30 and 300 K.
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Fig. 5. (Color online) Radial distribution of the µ− decays
for the time intervals 0–5, 5–10 and 10–15 µs at temperature
T = 300 K.

fusion radius from the point of pµ formation, for the tar-
get temperature of 30 and 300 K. The thermal diffusion
is significantly reduced at 30 K. This effect is, however,
limited because of the above-mentioned pµ acceleration in
the spin-flip process. The radial distribution of the muon
decays for several time intervals is plotted in Figure 5.

The calculated values of the mean diffusion radius for
a pure H2 target at φ = 0.01 are summarised in table 1.
The results are given for T = 30 and 300 K. The realistic
two-Maxwell distributions of the initial pµ energies have
been used. Also, the thermalized initial distributions of
pµ atoms with the depleted F = 1 state have been em-
ployed in order to investigate the thermal part of the diffu-
sion. A real H2 target always contains a certain admixture
of deuterium. Figure 6 demonstrates that the maximal
muonic atom diffusion radius is greatly increased when
the deuterium concentration of 10−4–10−3 is present in
the H2 target. The long-range tail in the radial distribu-
tion of the muon decays is due to very energetic (≈45 eV)
dµ atoms formed in the pµ collisions with deuterons. These
dµ atoms can travel at large distances owing to the deep
Ramsauer-Townsend minimum in the dµ+ p cross section
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Fig. 6. (Color online) Radial distribution of the µ− decays
in H2 with the deuterium concentrations Cd = 10−3 and 10−4,
for times t ≤ 20µs and T = 300 K.
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Fig. 7. (Color online) Radial distribution of the µ− decays
from the point of dµ formation in a pure D2, for times t ≤ 20µs
and T = 30 and 300 K.

Table 1. The calculated mean diffusion radius of the pµ atom in pure H2 targets for various initial conditions and ϕ = 0.01.

Temperature Initial ε distribution mean Rdiff [mm] for the time interval:

0–5 µs 5–10 µs 10–15 µs 15–20 µs

30K 0.004 eV(50%)+1 eV(50%) 0.68 0.88 0.99 1.11

300 K 0.040 eV(50%)+5 eV(50%) 1.27 2.67 3.50 4.26

30K thermal, F = 0 0.23 0.51 0.68 0.82

300 K thermal, F = 0 1.11 2.59 3.44 4.09

(see Fig. 1). Therefore, it is crucial to reduce the deu-
terium concentration to a very low level of about 10−7–
10−6. The distribution of the dµ diffusion radius in a pure
D2 gas is shown in Figure 7 for T = 30 and 300 K and
ϕ = 0.01. The mean value of Rdiff is smaller (0.80 mm
at 300 K and 0.65 mm at 30 K, for the time interval 0–5 µs)
than in the pure H2 case since the elastic dµ(F = 1/2)+d
and dµ(F = 3/2) + d cross sections are larger than the
elastic pµ(F = 0) + p cross section [9]. Moreover, the hy-
perfine splitting for dµ is ∆Ehfs

dµ = 0.0495 eV. As a result,
there is practically no spin-flip acceleration of dµ atoms
at 300 K. A relatively weaker acceleration, compared to
the pµ + H2 case, takes place at 30 K.

The Monte Carlo results can be compared with a sim-
ple analytical estimation. The kinetic theory of gases gives
the following mean diffusion radius Rdiff as a function of
time:

R
2

diff = 6Dt, (2)

in which D denotes the diffusion coefficient. It is assumed
that the atom survives until the time t. Using the standard
definitions from the kinetic theory of gases:

D =
vL

3
, L =

1√
2σN

, (3)

where v is the mean atom velocity, L is the mean free path,
σ stands for the total cross section and N is the number
density of atoms, one has

R
2

diff =
√

2
vt

σN
. (4)

The factor
√

2 is valid for a simple model of the hard
sphere collisions. However, the muonic atom scattering
from hydrogenic molecules is strongly anisotropic. There-
fore, we use the following approximation:

Rdiff ≈
√

vt

σtranN
, (5)

where σtran is the transport cross-section (1) averaged
over the thermal motion of the muonic atoms and of the
target molecules. Taking into account the muon lifetime
τ0 = 2.2 µs, we obtain the following estimation of the mean
diffusion radius:

Rdiff ≈
√

vτ0

σtranN
. (6)

For T = 300 K, ϕ = 0.01 and a pure H2 target we have
σtran = 20.8 × 10−20 cm2, which gives Rdiff ≈ 1.1 mm.
The analogous estimation for T = 30 K, using σtran =
161 × 10−20 cm2, leads to Rdiff ≈ 0.23 mm. These analyt-
ical values are in good agreement with the Monte Carlo
results calculated assuming the thermal initial distribu-
tion of pµ energies and zero population of the F = 1 state
(see the third column in Tab. 1). In the real case, the dif-
fusion radius is larger owing to the epithermal diffusion.
Let us note that it is very important to use the molecular
differential cross sections for a correct Monte Carlo simu-
lation of the thermal part of the diffusion. The diffusion
radius in H2 occurs to be about two times smaller than
in the case when the corresponding nuclear cross sections
are used.
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In conclusion, it has been shown that the optimal con-
ditions for studies of the µ− capture on the proton inside
the ground-state pµ(F = 0) atom are achieved at the tar-
get density φ ∼ 0.01 when the concentration of the deu-
terium is depleted to the level of 10−7–10−6. The mean dif-
fusion radius of the muonic atoms at these conditions is on
the order of 1 mm. It can be significantly lowered when the
target temperature is decreased from 300 K to 30 K. This
effect is, however, limited as a fraction of the pµ(F = 0)
atoms is epithermal both due to the initial high-energy
component and to the deexcitation of the F = 1 states.
The simulations of the muon capture experiments require
using the differential cross sections for the muonic atom
scattering from hydrogenic molecules. This is caused by
strong molecular-binding and electron-screening effects at
the collision energies below a few eV, where the main stage
of the diffusion process takes place.

Drs. P. Kammel, V.E. Markushin and C. Petitjean are grate-
fully acknowledged for stimulating and helpful discussions.
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